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Course Review Information

Mathematics 224

This course covers chapters 6-12 (except 6.1-6.3,7.3,7.6) in both my lecture notes and
the text. There are four main parts to this course. What they are and where they
are located in both the lecture notes and text are given below.

• Differential equations accounts for about 20% of course
and is found in chapters 6 and 10 (lecture notes 1, 9, 10).

• Integration accounts for about 50% of the course
and is found in chapters 7, 8 and 9 (lecture notes 2, 3, 4, 5, 6, 7, 8).

• Probability accounts for about 10% of the course
and is found in chapter 11 (lecture notes 11).

• Series accounts for about 20% of the course
and is found in chapter 12 (lecture notes 12, 13 and 14).

Chapter 6. Applications of the Derivative (notes 1)

• basic rules of differentiation

– notation: f ′(x), dy
dx
, d

dx
[f(x)] , Dx[f(x)]

– constant rule: if f(x) = k, k real, f ′(x) = 0

– power rule: if f(x) = xn, n real, f ′(x) = nxn−1

– constant times function rule: if f(x) = k · g, k real, f ′ = kg′

– sum or difference rule: if f(x) = u± v, f ′(x) = u′ ± v′

– product rule: if f(x) = u · v, f ′(x) = v · u′ + u · v′

– quotient rule: if y = u
v
, f ′(x) = v·u′−u·v′

[v]2

– chain rule: if y = g[f(x)], dy
dx

= f ′[g] · g′

• special cases of differentiation

d

dx
ex = ex,

d

dx
ax = (ln a)ax

d

dx
ln |x| = 1

x
= x−1,

d

dx
[loga |x|] =

1

(ln a)x
= ((ln a)x)−1
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• implicit differentiation: finding dy
dx

without explicitly expressing y in terms of x

– differentiate both sides of equation

– place all terms of dy
dx

on one side of equation; all other terms on other side

– factor out dy
dx
, solve for dy

dx

• related rates: implicit differentiation, where all variables depend on time, t

• differentials and linear approximation: point B approximated by point C

f(x+∆x) ≈ f(x) + dy = f(x) + f ′(x)dx.

y

x

tangent line at A

with slope f’(x)

x = dx

y = f(x +     x) - f(x)

A

y = f(x)

B

x

f(x)

x +     x

f(x +    x)

dy

∆ ∆

∆

∆

∆

C

Chapter 7. Integration (lecture notes 2, 3)

• basic rules of integration, indefinite integrals

– antiderivative F (x) is the integral of f(x),
∫

f(x) dx = F (x) + C

– power rule
∫

xn dx = xn+1

n+1
+ C, n 6= −1

– constant multiple rule
∫

k · f(x) dx = k
∫

f(x) dx+ C

– sum or difference rule
∫

[f(x)± g(x)] dx =
∫

f(x) dx± ∫

g(x) dx

– exponential functions

∗ ∫

ekx dx = ekx

k
+ C, k 6= 0

∗ ∫

akx dx = akx

k(ln a)
+ C, a > 0, a 6= 1

–
∫ 1

x
dx =

∫

x−1 dx =
∫ dx

x
= ln |x|+ C

use boundary conditions to determine constant of integration, C

• method of substitution after substituting u = f(x) (and so du = f ′(x)dx),

–
∫

[f(x)]nf ′(x) dx becomes
∫

un du = un+1

n+1
+ C, n 6= 1

–
∫

ef(x)f ′(x) dx becomes
∫

eu du = eu + C
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–
∫ f ′(x)

f(x)
dx becomes

∫ 1
u
du =

∫

u−1 du = ln |u|+ C

• Fundamental Theorem of calculus, definite integrals

– theorem:
∫ b
a f(x) dx = F (b)− F (a) = F (x)|ba

–
∫ a
a f(x) dx = 0

–
∫ b
a k · f(x) dx = k · ∫ b

a f(x) dx, for real k

–
∫ b
a [f(x)± g(x)] dx =

∫ b
a f(x) dx± ∫ b

a g(x) dx

–
∫ b
a f(x) dx =

∫ c
a f(x) dx+

∫ b
c f(x) dx

–
∫ b
a f(x) dx = − ∫ a

b f(x) dx

• area between two functions, where f(x) ≥ g(x) on [a, b] :
∫ b
a [f(x)− g(x)] dx

• economic’s applications

– consumer’s surplus:
∫ q0
0 [D(q)− p0] dq

– producer’s surplus:
∫ q0
0 [p0 − S(q)] dq

Chapter 8. Further Techniques Integration (4, 5)

• integration by parts:
∫

u dv = uv − ∫

v du

• table of various integrations

1.
∫

xn dx = xn+1

n+1
+ C, n 6= −1

2.
∫

ekx dx = 1
k
· ekx + C

3.
∫ a

x
dx = a ln |x|+ C

4.
∫

ln |ax| dx = x(ln |ax| − 1) + C

5.
∫ 1√

x2+a2
dx = ln |x+

√
x2 + a2|+ C

6.
∫ 1√

x2−a2
dx = ln |x+

√
x2 − a2|+ C

7.
∫ 1

a2−x2 dx = 1
2a

· ln
∣

∣

∣

a+x
a−x

∣

∣

∣+ C, a 6= 0

8.
∫ 1

x2−a2
dx = 1

2a
· ln

∣

∣

∣

x−a
x+a

∣

∣

∣+ C, a 6= 0

9.
∫ 1

x
√
a2−x2

dx = − 1
a
ln

∣

∣

∣

a+
√
a2−x2

x

∣

∣

∣+ C, 0 < x < a

10.
∫ 1

x
√
a2+x2

dx = − 1
a
ln

∣

∣

∣

a+
√
a2+x2

x

∣

∣

∣+ C, a 6= 0

11.
∫ x

ax+b
dx = x

a
− b

a2
ln |ax+ b| + C, a 6= 0

12.
∫ x

(ax+b)2
dx = b

a2(ax+b)
+ 1

a2
· ln |ax+ b|+ C, a 6= 0
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13.
∫ 1

x(ax+b)
dx = 1

b
· ln

∣

∣

∣

x
ax+b

∣

∣

∣+ C, b 6= 0

14.
∫ 1

x(ax+b)2
dx = 1

b(ax+b)
+ 1

b
· ln

∣

∣

∣

x
ax+b

∣

∣

∣+ C, b 6= 0

15.
∫

√
x2 + a2 dx = x

2

√
x2 + a2 + a2

2
· ln |x+

√
x2 + a2|+ C

16.
∫

xn ln x dx = xn+1
[

ln |x|
n+1

− 1
(n+1)2

]

+ C, n 6= −1

17.
∫

xneax dx = xneax

a
− n

a
· ∫ xn−1eax + C, a 6= 0

• volume of a solid of revolution: V = lim∆→0
∑n

i=1 π[f(xi)]
2∆x =

∫ b
a π[f(x)]

2
dx

• average value of a function f(x) on interval [a, b] : 1
b−a

∫ b
a f(x) dx

• rate of money flow (change in money per unit time)

– present value of money flow: P =
∫ T
0 f(t)e−rt dt

– accumulated amount of money flow at time T : A = erT
∫ T
0 f(t)e−rt dt

• improper integrals

–
∫∞
a f(x) dx = limb→∞

∫ b
a f(x) dx

–
∫ b
−∞ f(x) dx = lima→−∞

∫ b
a f(x) dx

–
∫∞
−∞ f(x) dx =

∫ c
−∞ f(x) dx+

∫∞
c f(x) dx

Chapter 9. Multivariate Calculus (notes 6, 7 and 8)

• first order partial derivative For z = f(x, y),

∂z

∂x
= lim

h→0

f(x+ h, y)− f(x, y)

h
,

∂z

∂y
= lim

h→0

f(x, y + h)− f(x, y)

h

• second–order partial derivatives: ∂2z
∂x∂x

, ∂2z
∂x∂y

, ∂2z
∂y∂x

, ∂2z
∂y∂y

which can also be

written as: fxx(x, y) = zxx, fyx(x, y) = zyx, fxy(x, y) = zxy, fyy(x, y) = zyy
Notice reversal in order of x and y between, for example, notation ∂2z

∂x∂y
and notation fyx(x, y) = zyx.

• discriminant test identifies relative minimum, maximum or saddlepoint

– find fx, fy, fxx, fyy, fxy

– find (a, b) such that fx(a, b) = 0 and fy(a, b) = 0

– find discriminant D = fxx(a, b) · fyy(a, b)− [fxy(a, b)]
2

– then

∗ f (relative) maximum at (a, b) if D > 0 and fxx(a, b) < 0
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∗ f (relative) minimum at (a, b) if D > 0 and fxx(a, b) > 0

∗ f saddlepoint at (a, b) if D < 0

∗ test not applicable, gives no information, if D = 0

f(x,y)

yx

slope in y direction,

at point (x,y) = (0,0)

is f   = 0 (minimum)y

slope in x direction,

at point (x,y) = (0,0)

is f   = 0 (minimum)   

y

x

x

y

f(x,y)

critical point,

minimum

critical point,

saddlepoint

slope in y direction,

at point (x,y) = (0,0)

is f   = 0 (maximum)y

slope in x direction,

at point (x,y) = (0,0)

is f   = 0  (minimum) x

(critical point, extremum and saddlepoint)

• Lagrange multipliers method used to solve constrained optimization problems

optimize f(x, y), subject to g(x, y) = 0,

– create Lagrange function: F (x, y, λ) = f(x, y)− λ · g(x, y)
a constraint such as r(x, y) = c must be rewritten as g(x, y) = r(x, y) − c = 0

– determine partial derivatives: Fx(x, y, λ), Fy(x, y, λ), Fλ(x, y, λ)

– solve system: Fx(x, y, λ) = 0, Fy(x, y, λ) = 0, Fλ(x, y, λ) = 0
for critical points (which may be minima, maxima or saddlepoints)

• total differential of z = f(x, y) : dz = fx(x, y) · dx+ fy(x, y) · dy
if differentials dx and dy are small,

f(x+∆x, y +∆y) = f(x, y) + ∆z

≈ f(x, y) + dz

= f(x, y) + fx(x, y) · dx+ fy(x, y) · dy.

more general z = f(x, y, z) : dz = fx(x, y, z) ·dx+fy(x, y, z) ·dy+fz(x, y, z) ·dz
dz is sometimes written df

• double integration

– rectangular region R in a ≤ x ≤ b, c ≤ y ≤ d,

∫ ∫

R

f(x, y) dy dx =
∫ b

a

∫ d

c
f(x, y) dy dx =

∫ d

c

∫ b

a
f(x, y) dx dy
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– variable region R

∫ b

a

∫ h(x)

g(x)
f(x, y) dy dx, or

∫ h(y)

g(y)

∫ d

c
f(x, y) dy dx

a b

c

d

R

a b

c

dy = h(x)

y = g(x)

R

R
x = g(y)

x = h(y)

rectangular region R variable region R variable region R

y y y

x x x

(double integrals over rectangular and variable regions)

if z = f(x, y) never negative, double integration is volume.

Chapter 10. Differential Equations (notes 9 and 10)

• elementary differential equation: dy
dx

= g(x)

– general solution: y =
∫

g(x) dx = G(x) + C

With addition of a initial (boundary) condition, y(x0) at x = x0, elementary differential equation becomes

initial value problem which has a particular solution where a “particular” constant C can be identified.

• separable differential equations has (general) solution
∫

q(y) dy =
∫

p(x) dx, or Q(y) = P (x) + C,

y

x

y

x

y

x

exponential growth (decay)

y = y  e     , k > 0 0

kx y = y  e     ,  k < 0 0
kx

growthdecay

limited growth

N

y = N - (N - y  ) e
-kx

0y
0

y
0

logistic growth

N

y = N / (1 + b e    )
-kx

y
0

(examples of separable differential equations)

separable differential equations differential equation, initial condition solution

exponential growth (decay) dy
dx

= ky, y(0) = y0 y = y0e
ky

limited growth dy
dx

= k(N − y), y(0) = y0 y = N − (N − y0)e
−kt

logistic growth dy
dx

= k
(

1− y
N

)

y, y(0) = y0 y = N
1+be−kt , b =

N−y0
y0
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• linear first-order differential equation dy
dx

+ P (x)y = Q(x)

has integrating factor I(x) = e
∫

P (x) dx and is solved using the following steps:

– rewrite given equation in form dy
dx

+ P (x)y = Q(x)

– multiply result by integrating factor, I(x)

– replace terms on left of result with Dx[I(x)y]

– integrate result, solve for y

• Euler’s method numerical method to solve differential equations:
Let y = f(x) be the solution to the differential equation

dy

dx
= g(x, y), with y(x0) = y0

for x0 ≤ x ≤ xn and let xi+1 = xi + h, where h = xn−x0

n
and

yi+1 = yi + g(xi, yi)h, for 0 ≤ i ≤ n− 1, then f(xi+1) ≈ yi+1

Chapter 11. Probability and Calculus (notes 11)

• (cumulative) distribution function for random variable X

F (x) = P (X ≤ x) , −∞ < x < ∞,

has properties

– limx→−∞ F (x) = 0,

– limx→∞ F (x) = 1,

– if x1 < x2, then F (x1) ≤ F (x2); that is, F is nondecreasing.

• (probability) density function, f(x)

f(x) =
dF (x)

dy
= F ′(x), and so, also, F (x) =

∫ x

−∞
f(t) dt

had properties

– f(x) ≥ 0, for all x,−∞ < x < ∞,

–
∫∞
−∞ f(x) dx = 1

• probability

P (a ≤ X ≤ b) = P (X ≤ b)− P (X ≤ a) = F (b)− F (a) =
∫ b

a
f(x) dy
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• expected value, variance and standard deviation

E(X) =
∑

x

xP (X = x), E(X) =
∫ ∞

−∞
xf(x) dx

Var(X) = σ2 = E[(X − µ)2] = E(X2)− [E(X)]2 = E(X2)− µ2

with associated standard deviation, σ =
√
σ2

• median: m that satisfies P (X ≤ m) ≥ 1
2
and P (X ≥ m) ≥ 1

2

• special distributions

– uniform

f(x) =

{

1
b−a

, a ≤ x ≤ b,

0, elsewhere,

µ = E(X) =
a+ b

2
, σ2 = Var(X) =

(b− a)2

12
, σ =

√

Var(X).

– exponential

f(x) =

{

ae−ax, 0 ≤ x < ∞,

0, elsewhere,

µ = E(X) =
1

a
, σ2 = V (Y ) =

1

a2
, σ =

1

a
.

– normal density with parameters µ and σ,

f(x) =
1

σ
√
2π

e−(1/2)[(x−µ)/σ]2,−infty < x < ∞

E(X) = µ, Var(X) = σ2, σ =
√

Var(X).

may be transformed to a standard normal, Z (µ = 0 and σ = 1)

f(z) =
1√
2π

e−z2/2, using Z =
X − µ

σ

Chapter 12. Sequences and Series (12, 13 and 14)

• basic definitions

– sequence is a function whose domain is set of natural numbers

– series: sum of elements of a sequence
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• geometric sequence and series, ratio of any two consecutive terms is r

an = arn−1 = an−1r, where r =
an+1

an
, n ≥ 1, and Sn =

a(rn − 1)

r − 1
, r 6= 1

• annuities

– (accumulated future) amount S of an annuity R

S = R







(

1 + r
m

)mt − 1
r
m





 = R · smt| r
m

= R

[

(1 + i)n − 1

i

]

= R · sn|i

– annuity payments required for a (accumulated future) sinking fund

R = S







(

r
m

)

(

1 + r
m

)mt − 1






= S

[

i

(1 + i)n − 1

]

– present value of a sequence of annuity payments

P = R







1−
(

1 + r
m

)−mt

r
m






= R · amt| r

m

= R

[

1− (1 + i)−n

i

]

= R · an|i

– amortization, annuity payments required to retire a present loan

R = P







(

r
m

)

1−
(

1 + r
m

)−mt






= P

[

i

1− (1 + i)−n

]

• Taylor polynomial of degree n for differentiable function f at x = 0

Pn(x) = f(0)+
f (1)(0)

1!
x+

f (2)(0)

2!
x2+

f (3)(0)

3!
x3+· · ·+ f (n)(0)

n!
xn =

n
∑

i=0

f (n)(0)

i!
xi.

for values of x close to 0 or large n, Pn(x) ≈ f(x)

• infinite series

– definitions: define infinite series a1 + a2 + a3 + · · ·+ an · · · =
∑∞

i=1 ai,
then if Sn = a1 + a2 + a3 + · · ·+ an and limn→∞ Sn = L

then infinite series converges if L exists, otherwise it diverges

– geometric series
∑∞

i=1 ar
i−1 = a + ar + ar2 + ar3 + · · ·

converges if r is in (−1, 1) and has sum a
1−r

, otherwise it diverges
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• (infinite) Taylor series for differentiable function f at x = 0

f(0) +
f (1)(0)

1!
x+

f (2)(0)

2!
x2 +

f (3)(0)

3!
x3 + · · ·

– example f(x), corresponding Taylor series and interval of convergence:

∗ f(x) = ex, 1 + x+ 1
2!
x2 + 1

3!
x3 + · · ·+ 1

n!
xn + · · · , (−∞,∞)

∗ f(x) = ln(1 + x), x− x2

2
+ x3

3
− x4

4
+ · · ·+ (−1)nxn+1

n+1
+ · · · , (−1, 1]

∗ f(x) = 1
1−x

, 1 + x+ x2 + x3 + · · ·+ xn + · · · , (−1, 1)

– let f and g be functions with Taylor series

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n + · · ·

g(x) = b0 + b1x+ b2x
2 + b3x

3 + · · ·+ bnx
n + · · ·

and so Taylor series of

∗ f + g : (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + · · ·+ (an + bn)x

n + · · ·
∗ c · f(x) : c · a0 + c · a1x+ c · a2x2 + · · ·+ c · anxn + · · ·
∗ xk · f(x) : a0x

k + a1x
k+1 + a2x

k+2 + · · ·+ anx
k+n + · · ·

∗ composition f [g(x)], where g(x) = cxk, is

a0 + a1[g(x)] + a2[g(x)]
2 + a3[g(x)]

3 + · · ·+ an[g(x)]
n + · · ·

• Newton’s method numerical method to find x such that f(s) = 0

cn+1 = cn −
f(cn)

f ′(cn)

• L’Hospital’s rule if

lim
x→a

f(x) = 0, lim
x→a

g(x) = 0, or lim
x→a

f(x) = ±∞, lim
x→a

g(x) = ±∞
then

lim
x→a

f ′(x)

g′(x)
= L ⇒ lim

x→a

f(x)

g(x)
= L

applies to infinite limits as well

Notes Chapter Topics Description

1 6 Graphing Implicit Functions (example) Y1 =
√
1−X2, Y2 = −

√
1−X2, GRAPH, WINDOW

1 6 Evaluating Functions Y = function, VAR Y–VAR ENTER ENTER (function) ENTER
3 7 Definite (Numerical) Integration MATH fnInt(Y1, X, lower bound, upper bound)
4 8 Volume of solid of revolution MATH fnInt(Y1 = πf(x)2, X, lower bound, upper bound)
4 8 Average value 1

b−a
MATH fnInt(Y1, X, lower bound, upper bound)

4 8 Money flow (example) Y1 = (3x+ 5)e−0.07x MATH fnInt(Y1, X, lower bound, upper bound)
10 10 Euler’s Method (example) For example, X + 0.1 → X : Y + Y1 × 0.1 → Y ENTER
11 11 Normal Distribution 2nd DISTR 2:normalcdf(lower bound, upper bound, mean, SD)

12 12 Geometric Series (example) 2nd LIST OPS seq

(

7 ∗
(

3

2

)X−1
,X, 1, 6

)

13 12 Taylor Series (example) Y1 = 1 +X, Y2 = Y1 + X2

2
, . . . 2nd TBLSET -1 1 Ask Auto 2nd TABLE

14 12 Newton’s Method (example) Y1 = −3X2 + 2X + 1, Y2 = −6X + 2, then 2 → X and X − Y1/Y2 → X


