TI-84 Labs For Mathematics 224 Introductory Analysis II

by

Jonathan Kuhn, Ph.D.
Associate Professor of Statistics, Mathematics, Statistics and Physics Department, Purdue University North Central

(c) by Jonathan Kuhn

TI-84+ Lab 1 for Mathematics 224

Topic: graphing implicit function and its derivative
Graphing An Implicit Equation and Its Derivative. Graph implicit equation

$$
R(x, y)=y^{2}+x^{2}-1=y^{2}+0 y+\left(x^{2}-1\right)=0
$$

where $a=1, b=0, c=x^{2}-1$, can be written explicitly in terms of y :

$$
y=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{0 \pm \sqrt{(0)^{2}-4(1)\left(x^{2}-1\right)}}{2(1)}= \pm \sqrt{1-x^{2}}
$$

an equation where each "half" of the equation consists of a differentiable function; upper half function $y=\sqrt{1-x^{2}}$ has derivative $\frac{d y}{d x}=-\frac{x}{\sqrt{1-x^{2}}}$ and lower half function $y=-\sqrt{1-x^{2}}$ has derivative $\frac{d y}{d x}=\frac{x}{\sqrt{1-x^{2}}}$

To graph in the TI-84+ calculator, set WINDOW -3 3 1-2 211
GRAPH functions $Y_{1}=\sqrt{1-X^{2}}$, and $Y_{2}=-\sqrt{1-X^{2}}$
GRAPH derivatives using $\mathrm{Y}_{3}=-\frac{x}{\sqrt{1-x^{2}}}$, and $\mathrm{Y}_{4}=\frac{x}{\sqrt{1-x^{2}}}$

