Quiz 5 for Mathematics 223
Introductory Analysis I - Fall 1999
Material Covered: Sections 4.4,4.5 of workbook and text For: 5th November

This is a 15 minute quiz, worth 6% and marked out of 6 points. The total possible points awarded for each question is given in square brackets at the beginning of each question. Anything that can fit on one side of an $8 \frac{1}{2}$ by 11 inch piece of paper may be used as a reference during this quiz. A calculator may also be used. No other aids are permitted.

Name (please print): \qquad . ID Number: \qquad .

1. [2] The equation of the tangent line to the curve defined by $x^{2}-3 x y+4 y^{2}=7$ at $\left(\sqrt{\frac{7}{2}}, 0\right)$ is (circle one)
(a) $y=-\frac{2}{8}\left(x-\sqrt{\frac{7}{2}}\right)$
(b) $y=\frac{2}{3}\left(x-\sqrt{\frac{7}{2}}\right)$
(c) $y=\frac{4}{8}\left(x-\sqrt{\frac{7}{2}}\right)$
(d) $y=-\frac{3}{8}\left(x-\sqrt{\frac{7}{2}}\right)$
(e) $y=-\frac{6}{8}\left(x-\sqrt{\frac{7}{2}}\right)$
2. [2] Suppose the radius r of a soup can (cylinder) is increasing at a rate of 1.5 centimeters per minute and the height h is increasing at 2.5 centimeters per minute. The volume of the soup can is given by $V=\pi r^{2} h$.
(a) [1] If t is time, the rate of change of the radius is given by (circle one)
(i) $\frac{d V}{d t}$
(ii) $\frac{d h}{d t}$
(iii) $\frac{d t}{d r}$
(iv) $\frac{d r}{d t}$
(v) $\frac{d V}{d r}$
(b) [1] Find the rate of change in volume with respect to time at the instant when $r=4$ centimeters and $h=15$ centimeters. (Hint: Use the product rule.) (circle one)
(i) 180π
(ii) 190π
(iii) 200π
(iv) 210π
(v) 220π
3. [2] Approximate $\sqrt{3(2.97)^{4}-9}$ using $f(x+\Delta x) \approx f(x)+f^{\prime}(x) d x$.
4. [2] (b) $y=\frac{2}{3}\left(x-\sqrt{\frac{7}{2}}\right)$
using implicit differentiation: $2 x-3\left(x \frac{d y}{d x}+y\right)+8 y \frac{d y}{d x}=0$
and so slope is $\frac{d y}{d x}=\frac{2 x-3 y}{3 x-8 y}=\frac{2 \sqrt{\frac{7}{2}}-3(0)}{-3 \sqrt{\frac{7}{2}}+8(0)}=\frac{2}{3}$
and using the point-slope form of a linear equation with slope $\frac{2}{3}$ and point $\left(\sqrt{\frac{7}{2}}, 0\right)$, the result follows
5. [2]
(a) $[1]$ (iv) $\frac{d r}{d t}$
(b) $[1]$ (v) 220π

$$
\text { since } V=\pi r^{2} h, \frac{d V}{d t}=\pi\left(r^{2} \frac{d h}{d t}+h 2 r \frac{d r}{d t}\right)=\pi\left(4^{2}(2.5)+2(4)(15)(1.5)\right)
$$

3. [2] Approximate $\sqrt{3(2.97)^{4}-9}$ using $f(x+\Delta x) \approx f(x)+f^{\prime}(x) d x$.
since $f(x)=\sqrt{3 x^{4}-9}, x=3$ and $\Delta x=d x=-0.03$,
and $f^{\prime}(x)=\frac{1}{2}\left(3 x^{4}-9\right)^{-\frac{1}{2}}\left(12 x^{3}\right)$
$f(x+\Delta x) \approx f(x)+f^{\prime}(x) d x=f(2.97) \approx f(3)+f^{\prime}(3) d x$
$=\sqrt{3(3)^{4}-9}+\frac{1}{2}\left(3(3)^{4}-9\right)^{-\frac{1}{2}}\left(12(3)^{3}\right)(-0.03) \approx 14.9793504$.
