Quiz 3 for Mathematics 223
Introductory Analysis I - Spring 2000
Material Covered: Section 3.2 of workbook and text For: Wednesday, 23rd February

This is a 15 minute quiz, worth 6% and marked out of 6 points. The total possible points awarded for each question is given in square brackets at the beginning of each question. Anything that can fit on one side of an $8 \frac{1}{2}$ by 11 inch piece of paper may be used as a reference during this quiz. A calculator may also be used. No other aids are permitted.

Name (please print): \qquad . ID Number: \qquad -

1. [2] Function $f(x)=2 x^{3}-5 x^{2}-11 x$ increases on interval(s) (circle none, one or more) (yes, there could be more than one interval!) $(-\infty,-0.91) /(2.42, \infty)$ $/(-0.66,2.12) /(2.12, \infty) /(-\infty,-0.76)$
2. [2] Function $f(x)=x^{4}-8 x^{3}+12 x-24$ is concave up on interval(s)
3. [2] Sketch the graph of the function that satisfies all of the given conditions.
(i) f is continuous everywhere except at $x=2$
(ii) $\lim _{x \rightarrow 2^{-}} f(x)=2$ and $\lim _{x \rightarrow 2^{+}} f(x)=0$
(iii) $f^{\prime}(x)=1$ on $(2, \infty)$
(iv) $f^{\prime \prime}(x)>0$ on $(-\infty,-2)$ and $f^{\prime \prime}(x)<0$ on $(-2,2)$

4. $[2](2.42, \infty),(-\infty,-0.76)$ (sketch using $(-10,10)$ and $(-40,40))$
5. $[2](-\infty, 0),(2.42, \infty)$ (sketch using $(-10,10)$ and $(-400,40))$
6. [2] Sketch
