5.3 Higher Derivatives, Concavity, and the Second Derivative Test

Notation for higher derivatives of $y=f(x)$ include

$$
\begin{array}{rrll}
\text { second derivative: } & f^{\prime \prime}(x), & , \frac{d^{2} y}{d x^{2}}, & D_{x}^{2}[f(x)], \\
\text { third derivative: } & f^{\prime \prime \prime}(x), & , \frac{d^{3} y}{d x^{3}}, & D_{x}^{3}[f(x)] \\
\text { fourth and above, } n \text { th, derivative: } & f^{(n)}(x), & , \frac{d^{(n)} y}{d x^{(n)}}, & D_{x}^{(n)}[f(x)] .
\end{array}
$$

Second derivative of function can be used to check for both concavity and points of inflection of the graph of function.

Figure 5.9 (Concave up, concave down and point of inflection)
In particular, if function f has both derivatives f^{\prime} and $f^{\prime \prime}$ for all x in (a, b), the

$$
\begin{aligned}
f(x) \text { is concave up } & \text { if } f^{\prime \prime}(x)>0, \text { for all } x \text { in }(\mathrm{a}, \mathrm{~b}) \\
f(x) \text { is concave down } & \text { if } f^{\prime \prime}(x)<0, \text { for all } x \text { in }(\mathrm{a}, \mathrm{~b})
\end{aligned}
$$

At an inflection point of function f, either $f^{\prime \prime}(x)=0$ or second derivative does not exist (although the reverse is not necessarily true). Second derivative test is used to check for relative extrema. Let $f^{\prime \prime}$ exist on open interval containing c (except maybe c itself) and let $f^{\prime}(c)=0$, then

$$
\begin{array}{ll}
\text { if } f^{\prime \prime}(c)>0 & \text { then } f(c) \text { is relative minimum } \\
\text { if } f^{\prime \prime}(c)<0 & \text { then } f(c) \text { is relative maximum }
\end{array}
$$

if $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(x)$ does not exist test gives no information, use first derivative test

Exercise 5.3 (Higher Derivatives, Concavity, and the Second Derivative Test)

1. Concave up, concave down and inflection points.

Figure 5.10 (Concave up, concave down and inflection points)
(a) Function is concave up between points (choose one or more)
(i) \mathbf{A} to C
(ii) \mathbf{C} to E
(iii) \mathbf{E} to \mathbf{F}
(iv) \mathbf{F} to \mathbf{G}
(v) \mathbf{G} to I
(vi) none
because slope always increases from left endpoint to right endpoint, without "holes"
(b) Function is concave down between points (choose one or more)
(i) \mathbf{A} to \mathbf{C}
(ii) C to E
(iii) \mathbf{E} to \mathbf{F}
(iv) \mathbf{F} to \mathbf{G}
(v) G to I
(vi) none
because slope always decreases from left endpoint to right endpoint
(c) Inflection point(s) at (choose one or more)
(i) \mathbf{A} (ii) \mathbf{B} (iii) \mathbf{C} (iv) \mathbf{D} (v) \mathbf{E}
(vi) \mathbf{F} (vii) \mathbf{G} (viii) $\mathbf{H} \quad$ (ix) $\mathbf{I} \quad$ (x) none
because, at point C, concavity flips from up to down, although $f^{\prime \prime}$ does not exist and, at point G, concavity flips from down to up and $f^{\prime \prime}=0$
2. More concave up, concave down and inflection points.

Figure 5.11 (Concave up, concave down and inflection points)
(a) Function is concave up between points (choose one or more)
(i) \mathbf{A} to \mathbf{B}
(ii) \mathbf{B} to C
(iii) \mathbf{C} to F
(iv) \mathbf{D} to F
(v) \mathbf{F} to \mathbf{H}
(vi) none
because slope always increases from left to right endpoints
(b) Function is concave down between points (choose one or more)
(i) A to B
(ii) B to C
(iii) C to F
(iv) \mathbf{D} to \mathbf{F}
(v) \mathbf{F} to H
(vi) none
because slope always decreases from left endpoint to right endpoint
(c) One inflection point at
(i) \mathbf{A}
(ii) B
(iii) \mathbf{C}
(iv) \mathbf{D} (v) \mathbf{E}
(vi) $\mathbf{F} \quad$ (vii) $\mathbf{G} \quad$ (viii) \mathbf{H}
because, at point F , concavity flips from up to down and $f^{\prime \prime}=0$,
but, at point D , concavity remains down, so $f^{\prime \prime} \neq 0$,
and, at point B , function does not exist, so cannot be an inflection point
3. Examples of higher derivatives.
(a) $f(x)=x^{2}+4 x-21$

So $f^{\prime}(x)=2 x^{2-1}+4(1) x^{1-1}=$
(i) $2 x^{2}+4$ (ii) $2 x-21$ (iii) $2 x+4$

Section 3. Higher Derivatives, Concavity, and the Second Derivative Test (LECTURE NOTES 11)183
and $f^{\prime \prime}(x)=2(1) x^{1-1}=$
(i) $2 x \quad$ (ii) $2 \quad$ (iii) 4
and so $f^{\prime \prime}(3)=$
$\begin{array}{lll}\text { (i) } 3 & \text { (ii) } 6 & \text { (iii) } 2\end{array}$
and so $f^{\prime \prime}(-8)=$
(i) 2
(ii) 3
(iii) 6
(b) $f(x)=2 x^{3}+3 x^{2}-36 x$

So $f^{\prime}(x)=2(3) x^{3-1}+3(2) x^{2-1}-36(1) x^{1-1}=$
(i) $6 x+6$ (ii) $6 x^{3}+6 x^{2}-36 x$ (iii) $6 x^{2}+6 x-36$
and $f^{\prime \prime}(x)=6(2) x^{2-1}+6(1) x^{1-1}=$
$\begin{array}{lll}\text { (i) } 12 x+6 & \text { (ii) } 12 x^{2}+6 x & \text { (iii) } 12+6 x\end{array}$
and so $f^{\prime \prime}(3)=12(3)+6=$
(i) $36 \quad$ (ii) $32 \quad$ (iii) 42
and so $f^{\prime \prime}(-8)=12(-8)+6=$
$\begin{array}{lll}\text { (i) }-45 & \text { (ii) }-90 & \text { (iii) }-8\end{array}$
and $f^{\prime \prime \prime}(x)=$
$\begin{array}{lll}\text { (i) } 12 & \text { (ii) } 6 \boldsymbol{x} & \text { (iii) } \mathbf{1 2 x}\end{array}$
and so $f^{\prime \prime \prime}(3)=$
(i) 12
(ii) 3
(iii) 4
and $f^{(4)}(x)=$
(i) $\mathbf{0}$ (ii) $\mathbf{1 2}$ (iii) $\mathbf{1 2 x}$
(c) $f(x)=3 x^{2}-2 x^{4}$

So $f^{\prime}(x)=3(2) x^{2-1}-2(4) x^{4-3}=$
$\begin{array}{lll}\text { (i) } 6 x-8 x^{3} & \text { (ii) } 6 x+2 x^{2} & \text { (iii) } 6 x^{3}+6 x^{2}\end{array}$ and $\frac{d^{2} y}{d x^{2}}=6(1) x^{1-1}-8(3) x^{3-1}=$ $\begin{array}{ll}\text { (i) } 6 & \text { (ii) } 6-24 x^{2} \\ \text { (iii) } 6 x\end{array}$
and $D_{x}^{3}[f(x)]=-24(2) x^{2-1}$
(i) $6 x \quad$ (ii) -12 (iii) $-48 x$
and $f^{(4)}(x)=$
(i) 12 (ii) $48 x$ (iii) -48
(d) $f(x)=\sqrt{3 x-3}$

Let $f[g(x)]=(3 x-3)^{1 / 2}$, where $g(x)=3 x-3$, and $f(x)=x^{1 / 2}$
so $D_{x}[f(x)]=f^{\prime}[g(x)] g^{\prime}(x)=\frac{1}{2}(3 x-3)^{\frac{1}{2}-1} \times 3(1) x^{1-1}=$
$\begin{array}{lll}\text { (i) } \frac{3}{2}(3 x-3)^{-\frac{1}{2}} & \text { (ii) } \frac{3}{2}(3 x-3)^{\frac{1}{2}} \quad \text { (iii) } \frac{3}{2}(3 x-3)^{-\frac{3}{2}}\end{array}$
Let $f[g(x)]=\frac{3}{2}(3 x-3)^{-\frac{1}{2}}$, where $g(x)=3 x-3$, and $f(x)=\frac{3}{2} x^{-\frac{1}{2}}$
so $D_{x}^{2}[f(x)]=f^{\prime}[g(x)] g^{\prime}(x)=\left(\frac{3}{2}\right)\left(\left(-\frac{1}{2}\right)(3 x-3)^{-\frac{1}{2}-1} \times 3=\right.$
(i) $\frac{9}{4}(3 x-3)^{-\frac{3}{2}}$
(ii) $-\frac{3}{4}(3 x-3)^{-\frac{3}{2}}$
(iii) $-\frac{9}{4}(3 x-3)^{-\frac{3}{2}}$

Let $f[g(x)]=-\frac{9}{4}(3 x-3)^{-\frac{3}{2}}$, where $g(x)=3 x-3$, and $f(x)=-\frac{9}{4} x^{-\frac{3}{2}}$
so $D_{x}^{3}[f(x)]=f^{\prime}[g(x)] g^{\prime}(x)=\left(-\frac{9}{4}\right)\left(\left(-\frac{3}{2}\right)(3 x-3)^{-\frac{3}{2}-1} \times 3=\right.$
(i) $\frac{27}{8}(3 x-3)^{-\frac{3}{2}}$
(ii) $\frac{81}{8}(3 x-3)^{-\frac{5}{2}}$
(iii) $-\frac{81}{8}(3 x-3)^{-\frac{5}{2}}$
(e) $f(x)=5 e^{2 x}$

Let $f[g(x)]=5 e^{2 x}$, where $g(x)=2 x$, and $f(x)=5 e^{x}$
so $D_{x}[f(x)]=f^{\prime}[g(x)] g^{\prime}(x)=5 e^{2 x} \times 2(1) x^{1-1}=$
(i) $5 e^{2 x}$
(ii) $5 e^{2}$ (iii) $10 e^{2 x}$

Let $f[g(x)]=10 e^{2 x}$, where $g(x)=2 x$, and $f(x)=10 e^{x}$
so $D_{x}^{2}[f(x)]=f^{\prime}[g(x)] g^{\prime}(x)=10 e^{2 x} \times 2(1) x^{1-1}=$
(i) $20 e^{2 x}$ (ii) $10 e^{2 x}$ (iii) $20 e^{x}$

Let $f[g(x)]=20 e^{2 x}$, where $g(x)=2 x$, and $f(x)=20 e^{x}$
so $D_{x}^{3}[f(x)]=f^{\prime}[g(x)] g^{\prime}(x)=20 e^{2 x} \times 2(1) x^{1-1}=$
(i) $10 e^{2 x}$
(ii) $40 e^{2 x}$ (iii) $5 e^{2 x}$
(f) $f(x)=\tan 2 x$. Recall, derivatives of trigonometric functions include:

$$
\begin{aligned}
D_{x}[\sin x]=\cos x & D_{x}[\csc x]=-\cot x \csc x \\
D_{x}[\cos x]=-\sin x & D_{x}[\sec x]=\tan x \sec x \\
D_{x}[\tan x]=\sec ^{2} x & D_{x}[\cot x]=-\csc ^{2} x
\end{aligned}
$$

So, let $f[g(x)]=\tan 2 x$, where $g(x)=2 x$, and $f(x)=\tan x$ so $D_{x}[f(x)]=f^{\prime}[g(x)] g^{\prime}(x)=\sec ^{2} 2 x \times 2(1) x^{1-1}=$

Section 3. Higher Derivatives, Concavity, and the Second Derivative Test (LECTURE NOTES 11)185
(i) $2 \sec 2 x$
(ii) $2 \sec ^{2} 2 x$
(iii) $2 \sec x$

Let $f[g(x)]=2 \sec ^{2} 2 x$, where $g(x)=\sec 2 x$, and $f(x)=2 x^{2}$ so $D_{x}^{2}[f(x)]=f^{\prime}[g(x)] g^{\prime}(x)=2(2) \sec ^{2-1} 2 x \times 2 \tan 2 x \sec 2 x=$
(i) $8 \tan 2 x \sec ^{2} 2 x$ (ii) $6 \tan 2 x \sec ^{2} 2 x$ (iii) $8 \tan 2 x \sec 2 x$
4. Application: throwing a ball. A ball is thrown upwards with an initial velocity of 32 feet per second and from an initial height of 150 feet. A function relating height, $f(t)$, to time, f, when throwing this ball is:

$$
f(t)=-12 t^{2}+32 t+150
$$

Find velocity, $v(t)=f^{\prime}(t)$, acceleration, $a(t)=v^{\prime}(t)=f^{\prime \prime}(t)$, at $t=5$ seconds.
So $f^{\prime}(t)=-12(2) t^{2-1}+32(1) t^{1-1}=$
$\begin{array}{lll}\text { (i) } 24 t+32 & \text { (ii) }-24 t & \text { (iii) }-24 t+32\end{array}$
and so $f^{\prime}(5)=-24(5)+32=$
(i) 88 (ii) 5 (iii) -88 feet per second
and $f^{\prime \prime}(t)=-24(1) t^{1-1}=$
(i) $\mathbf{- 2 4}$ (ii) 24 (iii) -88
and so $f^{\prime \prime}(5)=$
(i) 24 (ii) $\mathbf{- 2 4}$ (iii) -88 feet per second ${ }^{2}$

True / False.
Acceleration is first derivative of velocity or second derivative of height.
5. Application: index of absolute risk aversion. Index of absolute risk aversion is

$$
I(M)=\frac{-U^{\prime \prime}(M)}{U^{\prime}(M)}
$$

where M is quantity of a commodity owned by a consumer and $U(M)$ is utility (fulfillment) a consumer derives from the quantity M of the commodity. Find $I(M)$ if $U(M)=M^{3}$.

Since $U^{\prime}(M)=3 M^{3-1}=\left(\right.$ i) $\boldsymbol{M}^{\mathbf{2}}$ (ii) $\mathbf{3} \boldsymbol{M}$ (iii) $\mathbf{3} \boldsymbol{M}^{\mathbf{2}}$
and also $U^{\prime \prime}(M)=3(2) M^{2-1}=\left(\right.$ i) $\mathbf{6} \boldsymbol{M}^{\mathbf{2}} \quad$ (ii) $\mathbf{6} \boldsymbol{M} \quad$ (iii) $\mathbf{6}$
and so

$$
I(M)=\frac{-U^{\prime \prime}(M)}{U^{\prime}(M)}=\frac{-6 M}{3 M^{2}}=
$$

(i) $\frac{-1}{M}$
(ii) $\frac{-2}{M}$
(iii) $\frac{2}{M}$
6. Second derivative test: $f(x)=5 x-4$ revisited

Figure 5.12 (Second derivative test: $f(x)=5 x-4$)

GRAPH using $\mathrm{Y}_{1}=5 x-4$, with WINDOW -5 5 1-5 5 11
(a) Critical numbers, points of inflection and intervals. Recall, since

$$
f^{\prime}(x)=5(1) x^{1-1}=5
$$

there (i) are (ii) are no critical numbers, because $f^{\prime}(x)=5$ can never equal zero
and also since

$$
f^{\prime \prime}(x)=0,
$$

there (i) are (ii) are no points of inflection, because a point of inflection is that point on function where concavity is defined to change; but $f^{\prime \prime}(x)=0$ everywhere with no concave up or concave down sections of function anywhere, so certainly there could not be any points where concavity changes
and so there is only one interval to investigate
(i) $(2, \infty)$
(ii) $(-2,2) \quad$ (iii) $(-\infty, \infty)$
so summarizing:

Section 3. Higher Derivatives, Concavity, and the Second Derivative Test (LECTURE NOTES 11)187

interval	$(-\infty, \infty)$
critical value	none
$f^{\prime \prime}(x)=0$	$f^{\prime \prime}(x)=0$
sign of $f^{\prime \prime}(x)$	zero

(b) Second derivative test.

It (i) is (ii) is not possible to perform second derivative test because there are no critical numbers to test
7. Second derivative test: $f(x)=x^{2}+4 x-21$ revisited

Figure 5.13 (Second derivative test: $f(x)=x^{2}+4 x-21$)

GRAPH using $\mathrm{Y}_{2}=x^{2}+4 x-21$, with WINDOW -15 $151-301011$
(a) Critical numbers, points of inflection and intervals.

Recall, since

$$
f^{\prime}(x)=2 x^{2-1}+4(1) x^{1-1}=2 x+4=0,
$$

there is a critical number at
$c=-\frac{4}{2}=$ (i) $-\mathbf{2} \quad$ (ii) $2 \quad$ (iii) $\mathbf{0}$
and also since

$$
f^{\prime \prime}(x)=2(1) x^{1-1}=2>0
$$

there (i) is (ii) is no point of inflection,
there is no point of inflection because $f^{\prime \prime}(x)=2$ can never equal zero
and so there is one interval to investigate
(i) $(2, \infty)$
(ii) $(-2,2) \quad$ (iii) $(-\infty, \infty)$
and at critical number $c=-2, f^{\prime \prime}(-2)=2$ is
(i) positive (ii) negative (iii) zero so summarizing:

interval	$(-\infty, \infty)$
critical value	$c=-2$
$f^{\prime \prime}(x)=2$	$f^{\prime \prime}(-2)=2$
sign of $f^{\prime \prime}(x)$	positive

(b) Second derivative test.

At critical number $c=-2$, sign of derivative $f^{\prime \prime}(x)$
(i) positive, so concave up
(ii) negative, so concave down
(iii) zero
and so, according to second derivative test, there is
(i) a relative minimum
(ii) a relative maximum
(iii) not enough information to decide, use first derivative test
at critical number $c=-2$,
and since $f(-2)=(-2)^{2}+4(-2)-21=-25$,
at critical point $(c, f(c))=(-2,-25)$.
8. Second derivative test: $f(x)=2 x^{3}+3 x^{2}-36 x$ revisited

Figure 5.14 (Second derivative test: $f(x)=2 x^{3}+3 x^{2}-36 x$)

GRAPH using $\mathrm{Y}_{3}=2 x^{3}+3 x^{2}-36 x$, with WINDOW -10 $101-10010011$
(a) Critical numbers, points of inflection and intervals.

Recall, since
$f^{\prime}(x)=2(3) x^{3-1}+3(2) x^{2-1}-36(1) x^{1-1}=6 x^{2}+6 x+36=6(x+3)(x-2)=0$,
there are two critical numbers at
$c=(\mathrm{i})-\mathbf{3} \quad$ (ii) $\mathbf{2}$ (iii) $\mathbf{6}$
and also since

$$
f^{\prime \prime}(x)=6(2) x^{2-1}+6(1) x^{1-1}=12 x+6=0
$$

Section 3. Higher Derivatives, Concavity, and the Second Derivative Test (LECTURE NOTES 11)189
there is one point of inflection at
$x=$ (i) $-\frac{1}{2} \quad$ (ii) $0 \quad$ (iii) $\frac{1}{2}$
and so there are two intervals to investigate
(i) $\left(-\infty,-\frac{1}{2}\right)$
(ii) $\left(-\infty, \frac{1}{2}\right)$
(iii) $\left(-\frac{1}{2}, \infty\right)$
and at critical number $c=-3, f^{\prime \prime}(-1)=12(-3)+6=-30$ is (i) positive (ii) negative (iii) zero
and at critical number $c=2, f^{\prime \prime}(0)=12(2)+6=30$ is (i) positive (ii) negative (iii) zero
so summarizing:

interval	$\left(-\infty,-\frac{1}{2}\right)$	$\left(-\frac{1}{2}, \infty\right)$
critical value	$c=-3$	$c=2$
$f^{\prime \prime}(x)=12 x+6$	$f^{\prime \prime}(-3)=-30$	$f^{\prime \prime}(2)=30$
sign of $f^{\prime \prime}(x)$	negative	positive

Notice interval here for second derivative bounded by point of inflection (bounds concavity) and critical point is inside this interval, whereas for first derivative test, interval bounded by critical point (bounds in/decreasing function) and so critical point is on "edge" of interval.
(b) Second derivative test.

At critical number $c=-3$, sign of derivative $f^{\prime \prime}(x)$
(i) positive, so concave up
(ii) negative, so concave down
(iii) zero
and so, according to second derivative test, there is
(i) a relative minimum
(ii) a relative maximum
(iii) not enough information to decide, use first derivative test at critical number $c=-3$,
and since $f(-3)=2(-3)^{3}+3(-3)^{2}-36(-3)=81$, at critical point $(c, f(c))=(-3,81)$.

At critical number $c=2$, sign of derivative $f^{\prime \prime}(x)$
(i) positive, so concave up
(ii) negative, so concave down
(iii) zero
and so, according to second derivative rule, there is
(i) a relative minimum
(ii) a relative maximum
(iii) not enough information to decide, use first derivative test
at critical number $c=2$,
and since $f(2)=2(2)^{3}+3(2)^{2}-36(2)=-44$, at critical point $(c, f(c))=(2,-44)$.
9. Second derivative test: $f(x)=3 x^{3}-2 x^{4}$ revisited

Figure 5.15 (Second derivative test: $f(x)=3 x^{3}-2 x^{4}$)

GRAPH using $\mathrm{Y}_{4}=3 x^{3}-2 x^{4}$, with WINDOW -3 3 1-3 211
(a) Critical numbers, points of inflection and intervals.

Recall, since

$$
f^{\prime}(x)=3(3) x^{3-1}-2(4) x^{4-1}=9 x^{2}-8 x^{3}=9 x^{2}\left(1-\frac{8}{9} x\right)=0
$$

there are two critical numbers at
$c=(\mathrm{i})-\frac{9}{8} \quad$ (ii) $0 \quad$ (iii) $\frac{9}{8}$
and also since

$$
f^{\prime \prime}(x)=9(2) x^{2-1}-8(3) x^{3-1}=18 x-24 x^{2}=18 x\left(1-\frac{24}{18} x\right)=0
$$

there are two points of inflection at

$$
x=(\mathrm{i})-\frac{3}{4} \quad \text { (ii) } 0 \quad \text { (iii) } \frac{3}{4}
$$

because $18 x=0$ when $x=0$ and $1-\frac{24}{18} x=1-\frac{4}{3} x=0$ when $x=\frac{3}{4}$
and so there are three intervals to investigate
(i) $(-\infty, 0)$
(ii) $\left(-\infty, \frac{3}{4}\right)$
(iii) $\left(0, \frac{3}{4}\right)$ (iv) $\left(\frac{3}{4}, \infty\right)$
and at critical number $c=0, f^{\prime \prime}(0)=18(0)-24(0)^{2}=0$ is
(i) positive (ii) negative (iii) zero
and at $c=\frac{9}{8}, f^{\prime \prime}\left(\frac{9}{8}\right)=18\left(\frac{9}{8}\right)-24\left(\frac{9}{8}\right)^{2}=-\frac{27}{4}$ is

Section 3. Higher Derivatives, Concavity, and the Second Derivative Test (LECTURE NOTES 11)191
(i) positive (ii) negative (iii) zero
so summarizing:

interval	$(-\infty, 0)$	$\left(0, \frac{3}{4}\right)$	$\left(\frac{3}{4}, \infty\right)$
critical value	$c=0$	$c=0$	$c=\frac{9}{8}$
$f^{\prime \prime}(x)=18 x-24 x^{2}$	$f^{\prime \prime}(0)=0$	$f^{\prime \prime}(0)=0$	$f^{\prime \prime}\left(\frac{9}{8}\right)=-\frac{27}{4}$
sign of $f^{\prime \prime}(x)$	zero	zero	negative

(b) Second derivative test.

At critical number $c=0$, sign of derivative $f^{\prime \prime}(x)$
(i) positive, so concave up
(ii) negative, so concave down
(iii) zero
and so, according to second derivative test, there is
(i) a relative minimum
(ii) a relative maximum
(iii) not enough information to decide, use first derivative test at critical number $c=0$,

At critical number $c=\frac{3}{4}$, sign of derivative $f^{\prime \prime}(x)$
(i) positive, so concave up
(ii) negative, so concave down
(iii) zero
and so, according to second derivative rule, there is
(i) a relative minimum
(ii) a relative maximum
(iii) not enough information to decide, use first derivative test at critical number $c=\frac{3}{4}$,
and since $f\left(\frac{3}{4}\right)=3\left(\frac{3}{4}\right)^{3}-2\left(\frac{3}{4}\right)^{4}=\frac{81}{128}$,
at critical point $(c, f(c))=\left(\frac{3}{4}, \frac{81}{128}\right)$.
10. Application of second derivative test: throwing a ball. A ball is thrown upwards with an initial velocity of 32 feet per second and from an initial height of 150 feet. A function relating height, $f(t)$, to time, f, when throwing this ball is:

$$
f(t)=-12 t^{2}+32 t+150
$$

Find maximum height, $f(t)$, and time, t, ball reaches maximum height.
GRAPH using $\mathrm{Y}_{5}=-12 x^{2}+32 x+150$, with WINDOW 061025011
(a) Critical numbers, points of inflection and intervals.

Recall, since

$$
f^{\prime}(x)=-12(2) t^{2-1}+32(1) t^{1-1}=-24 t+32=0
$$

there is a critical number at
$c=-\frac{32}{-24}=$ (i) $\frac{4}{3} \quad$ (ii) $-\frac{4}{3} \quad$ (iii) $\frac{3}{4}$
and also since

$$
f^{\prime \prime}(x)=-24(1) t^{1-1}=-24<0
$$

there (i) is (ii) is no point of inflection,
there is no point of inflection because $f^{\prime \prime}(x)=-24$ can never equal zero
and so there is one interval to investigate
(i) $(2, \infty)$
(ii) $(-2,2) \quad$ (iii) $(-\infty, \infty)$
and at critical number $c=\frac{4}{3}, f^{\prime \prime}\left(\frac{4}{3}\right)=-24$ is
(i) positive (ii) negative (iii) zero
so summarizing:

interval	$(-\infty, \infty)$
critical value	$c=\frac{4}{3}$
$f^{\prime \prime}(x)=-24$	$f^{\prime \prime}\left(\frac{4}{3}\right)=-24$
sign of $f^{\prime \prime}(x)$	negative

(b) Second derivative test.

At critical number $c=\frac{4}{3}$, sign of derivative $f^{\prime \prime}(x)$
(i) positive, so concave up
(ii) negative, so concave down
(iii) zero
and so, according to second derivative test, there is
(i) a relative minimum
(ii) a relative maximum
(iii) not enough information to decide, use first derivative test at critical number $c=\frac{4}{3}$,
and since $f\left(\frac{4}{3}\right)=-12\left(\frac{4}{3}\right)^{2}+32\left(\frac{4}{3}\right)+150=\frac{514}{3}$,
at critical point $(c, f(c))=\left(\frac{4}{3}, \frac{514}{3}\right)$.
(c) Results

In other words, ball reaches maximum height of (i) $\frac{4}{3} \quad$ (ii) $\frac{3}{514}$ (iii) $\frac{514}{3}$ at time (i) $\frac{4}{3} \quad$ (ii) $-\frac{4}{3} \quad$ (iii) $\frac{3}{4}$

5.4 Curve Sketching

We combine a number of previous ideas to sketch a graph of a function. First, determine the following properties of the function:

1. domain, note restrictions
cannot divide by 0 , or take square root of negative number, or take logarithm of 0 or of a negative number
2. y-intercept, x-intercept, if they exist
y-intercept: let $x=0$ in $f(x), x$-intercept: solve $f(x)=0$ for x
3. vertical, horizontal, oblique asymptotes
vertical asymptote when denominator 0 , horizontal asymptote when $x \rightarrow \infty$, or $x \rightarrow-\infty$
4. symmetry
symmetric about y-axis if $f(-x)-f(x)$; symmetric about origin if $f(-x)=-f(x)$
5. first derivative test
note critical points (when $f^{\prime}(x)=0$), relative extrema, in/decreasing sections of function
6. points of inflection, intervals and concavity
note inflection points (when $f^{\prime \prime}(x)=0$), concave up/down
Then, plot all points and connect them with a smooth curve, taking into account asymptotes, concavity and in/decreasing sections of function. Check result with a graphing calculator. Commonly recurring shapes are given in the figure; for example, an increasing concave up function is given in upper left corner.

	increasing $f^{\prime}(x)>0$	decreasing $f^{\prime}(x)<0$
concave		
up $^{\prime 2}(x)>0$		
f^{\prime}		
concave		
down		
$f^{\prime \prime}(x)<0$		

Figure 5.16 (Some important function shapes)

Exercise 5.4 (Curve Sketching)

1. Increasing, decreasing and concavity together: $f(x)=2 x^{3}+3 x^{2}-36 x$ revisited.

Figure 5.17 (Increasing, decreasing and concavity together)
(a) On interval $(-\infty,-3), f(x)=2 x^{3}+3 x^{2}-36 x$ is
i. increasing and concave up
ii. increasing and concave down
iii. decreasing and concave up
iv. decreasing and concave down
(b) On interval $\left(-3,-\frac{1}{2}\right), f(x)=2 x^{3}+3 x^{2}-36 x$ is
i. increasing and concave up
ii. increasing and concave down
iii. decreasing and concave up
iv. decreasing and concave down
(c) On interval $\left(-\frac{1}{2}, 2\right), f(x)=2 x^{3}+3 x^{2}-36 x$ is
i. increasing and concave up
ii. increasing and concave down
iii. decreasing and concave up
iv. decreasing and concave down
(d) On interval $(2, \infty), f(x)=2 x^{3}+3 x^{2}-36 x$ is
i. increasing and concave up
ii. increasing and concave down
iii. decreasing and concave up
iv. decreasing and concave down
2. $f(x)=x^{2}+4 x-21$ revisited

Figure $5.18\left(f(x)=x^{2}+4 x-21\right)$
(a) domain
(i) $(-\infty, \infty)$
(ii) $(-\infty, \infty), x \neq 0$
(iii) $(-\infty, \infty), x \neq-2$
(b) intercepts, if they exist
y-intercept
when $x=0, f(0)=(0)^{2}+4(0)-21=$
(i) -21 (ii) 21 (iii) -23
x-intercept(s)
$f(x)=x^{2}+4 x-21=(x-3)(x+7)=0$ when $x=$
(i) 3 (ii) -3 (iii) -7
(c) asymptotes
vertical
$f(x)=x^{2}+4 x-21$ (i) does (ii) does not have any vertical asymptotes because $f(x)$, a polynomial, does not have a denominator (and so cannot be divided by 0 , causing a vertical asymptote)
horizontal
$f(x)=x^{2}+4 x-21$ (i) does (ii) does not have horizontal asymptotes because $\lim _{x \rightarrow \infty}\left(x^{2}+4 x-21\right)=$ (i) $\infty \quad$ (ii) $-\infty \quad$ (iii) 0
and $\lim _{x \rightarrow-\infty}\left(x^{2}+4 x-21\right)=$ (i) $\infty \quad$ (ii) $-\infty \quad$ (iii) 0
oblique
$f(x)=x^{2}+4 x-21$ (i) does (ii) does not have any oblique asymptotes because $f(x)$ cannot be rewritten in the form $g(x)+\frac{1}{a x+b}$
(d) symmetry
about y-axis
$f(x)$ (i) is (ii) is not symmetric about y-axis
because $f(-x)=(-x)^{2}+4(-x)-21 \neq x^{2}+4 x-21=f(x)$
about origin
$f(x)$ (i) is (ii) is not symmetric about origin
because $f(-x)=(-x)^{2}+4(-x)-21 \neq-x^{2}-4 x+21=-f(x)$
(e) first derivative test
i. critical numbers and intervals.

Recall, since

$$
f^{\prime}(x)=2 x+4=0
$$

there is a critical number at

$$
c=-\frac{4}{2}=(\mathrm{i})-\mathbf{2} \quad \text { (ii) } \mathbf{2} \quad \text { (iii) } \mathbf{0}
$$

and so there are two intervals to investigate
(i) $(-\infty,-2) \quad$ (ii) $(-2,2) \quad$ (iii) $(-2, \infty)$
with two possible test values (in each interval) to check, say:
$x=(\mathrm{i})-\mathbf{3} \quad$ (ii) $-2 \quad$ (iii) $\mathbf{0}$
and since $f^{\prime}(-3)=2(-3)+4=-2$ is negative,
function $f(x)$ (i) increases (ii) decreases over $(-\infty,-2)$ interval
and $f^{\prime}(0)=2(0)+4=4$ is positive, function $f(x)$ (i) increases (ii) decreases over $(-2, \infty)$ interval so summarizing:

interval	$(-\infty,-2)$	$(-2, \infty)$
test value	$x=-3$	$x=-1$
$f^{\prime}(x)=2 x+4$	$f^{\prime}(-3)=-2$	$f^{\prime}(-1)=2$
sign of $f^{\prime}(x)$	negative	positive

ii. first derivative rule.

At critical number $c=-2$, sign of derivative $f^{\prime}(x)$ goes from
(i) negative to positive
(ii) positive to negative
(iii) negative to negative
(iv) positive to positive
and so, according to first derivative rule, there is
(i) a relative minimum
(ii) a relative maximum
(iii) not a relative extremum
at critical number $c=-2$,
and since $f(-2)=(-2)^{2}+4(-2)-21=-25$, at critical point $(c, f(c))=(-2,-25)$.
(f) points of inflection, intervals and concavity

Recall, since

$$
f^{\prime}(x)=2 x^{2-1}+4(1) x^{1-1}=2 x+4=0
$$

there is a critical number at
$c=-\frac{4}{2}=($ i) $-2 \quad$ (ii) $2 \quad$ (iii) 0
and also since

$$
f^{\prime \prime}(x)=2(1) x^{1-1}=2>0
$$

there (i) is (ii) is no point of inflection,
there is no point of inflection because $f^{\prime \prime}(x)=2$ can never equal zero
and so there is one interval to investigate
(i) $(2, \infty)$
(ii) $(-2,2) \quad$ (iii) $(-\infty, \infty)$
and at test number 0 , say, $f^{\prime \prime}(0)=2$ is positive so $f(x)$ is concave (i) up (ii) down over $(-\infty, \infty)$
so summarizing

interval	$(-\infty, \infty)$
test number	0
$f^{\prime \prime}(x)=2$	$f^{\prime \prime}(0)=2$
sign of $f^{\prime \prime}(x)$	positive

(g) Graph summary. Combining information from above:

interval	$(-\infty,-2)$	$(-2, \infty)$
sign of $f^{\prime}(x)$	-	+
sign of $f^{\prime \prime}(x)$	+	+
increasing/decreasing?	decreasing	increasing
concave up/down?	upward	upward

3. $f(x)=\frac{2 x^{2}+2}{x^{2}+5}$ revisited

Figure $5.19\left(f(x)=\frac{2 x^{2}+2}{x^{2}+5}\right)$
GRAPH using $Y_{2}=\frac{2 x^{2}+2}{x^{2}+5}$, with WINDOW -10 $101-1311$
(a) domain
(i) $(-\infty, \infty)$
(ii) $(-\infty, \infty), \boldsymbol{x} \neq 0$
(iii) $(-\infty, \infty), x \neq-2$
because denominator of $f(x)=\frac{2 x^{2}+2}{x^{2}+5}$; namely, $x^{2}+5$, can never be 0 and so interrupt the domain with a vertical asymptote
(b) intercepts, if they exist
y-intercept
when $x=0, f(0)=\frac{2(0)^{2}+2}{(0)^{2}+5}=$ (i) $\frac{2}{5} \quad$ (ii) $\frac{3}{5} \quad$ (iii) $-\frac{2}{5}$
x-intercept(s)
$f(x)=\frac{2 x^{2}+2}{x^{2}+5}$ (i) does (ii) does not have an x-intercept
because numerator of $f(x)$; specifically, $2 x^{2}+2$ can never be zero and so an x-intercept is not possible
(c) asymptotes
vertical
$f(x)=\frac{2 x^{2}+2}{x^{2}+5}$ (i) does (ii) does not have any vertical asymptotes because denominator of $f(x), x^{2}+5$, can never be 0 and so a vertical asymptote is not possible
horizontal
$f(x)=\frac{2 x^{2}+2}{x^{2}+5}$ (i) does (ii) does not have a horizontal asymptote because
i. limit at positive infinity

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}+2}{x^{2}+5}=\lim _{x \rightarrow \infty} \frac{\frac{2 x^{2}}{x^{2}}+\frac{2}{x^{2}}}{\frac{x^{2}}{x^{2}}+\frac{5}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{2+\frac{2}{x^{2}}}{1+\frac{5}{x^{2}}}=
$$

(i) $\mathbf{0}$ (ii) $\mathbf{1}$ (iii) $\mathbf{2}$.
ii. limit at negative infinity

$$
\lim _{x \rightarrow-\infty} \frac{2 x^{2}+2}{x^{2}+5}=\lim _{x \rightarrow-\infty} \frac{\frac{2 x^{2}}{x^{2}}+\frac{2}{x^{2}}}{\frac{x^{2}}{x^{2}}+\frac{5}{x^{2}}}=\lim _{x \rightarrow-\infty} \frac{2+\frac{2}{x^{2}}}{1+\frac{5}{x^{2}}}=
$$

(i) $0 \quad$ (ii) $\mathbf{1} \quad$ (iii) 2.
iii. so horizontal asymptote at (i) $\boldsymbol{y}=\mathbf{0}$ (ii) $\boldsymbol{y}=\mathbf{1} \quad$ (iii) $\boldsymbol{y}=\mathbf{2}$
oblique
$f(x)=\frac{2 x^{2}+2}{x^{2}+5}$ (i) does (ii) does not have any oblique asymptotes because $f(x)$ cannot be rewritten in the form $g(x)+\frac{1}{a x+b}$
(d) symmetry
about y-axis
$f(x)$ (i) is (ii) is not symmetric about y-axis
because $f(-x)=\frac{2(-x)^{2}+2}{(-x)^{2}+5}=\frac{2 x^{2}+2}{x^{2}+5}=f(x)$
about origin
$f(x)$ (i) is (ii) is not symmetric about origin
because $f(-x)=\frac{2(-x)^{2}+2}{(-x)^{2}+5} \neq-\frac{2 x^{2}+2}{x^{2}+5}=-f(x)$
(e) first derivative test
i. critical numbers and intervals.

Let $u(x)=2 x^{2}+2$ and $v(x)=x^{2}+5$.
then, $u^{\prime}(x)=2(2) x^{2-1}=4 x$ and $v^{\prime}(x)=2 x^{2-1}=2 x$
and so $v(x) u^{\prime}(x)=\left(x^{2}+5\right)(4 x)$ and $u(x) v^{\prime}(x)=\left(2 x^{2}+2\right)(2 x)$
and so since
$f^{\prime}(x)=\frac{v(x) \cdot u^{\prime}(x)-u(x) \cdot v^{\prime}(x)}{[v(x)]^{2}}=\frac{\left(x^{2}+5\right)(4 x)-\left(2 x^{2}+2\right)(2 x)}{\left[x^{2}+5\right]^{2}}=\frac{16 x}{x^{4}+10 x^{2}+25}=0$
there is a critical number at
$c=(\mathrm{i})-\mathbf{2} \quad$ (ii) $\mathbf{2} \quad$ (iii) $\mathbf{0}$
because $16 x=0$ when $x=0$
and so there are two intervals to investigate
(i) $(-\infty, 0) \quad$ (ii) $(-2,2) \quad$ (iii) $(0, \infty)$
with two possible test values (in each interval) to check, say:
$x=(\mathrm{i})-\mathbf{1} \quad$ (ii) $\mathbf{0} \quad$ (iii) $\mathbf{1}$
and since $f^{\prime}(-1)=\frac{16(-1)}{(-1)^{4}+10(-1)^{2}+25}=-\frac{4}{9}$ is negative,
function $f(x)$ (i) increases (ii) decreases over $(-\infty, 0)$ interval
and $f^{\prime}(1)=\frac{16(1)}{(1)^{4}+10(1)^{2}+25}=\frac{4}{9}$ is positive,
function $f(x)$ (i) increases (ii) decreases over ($0, \infty$) interval so summarizing:

interval	$(-\infty, 0)$	$(0, \infty)$
test value	$x=-1$	$x=1$
$f^{\prime}(x)=\frac{16 x}{x^{4}+10 x^{2}+25}$	$f^{\prime}(-1)=-\frac{4}{9}$	$f^{\prime}(1)=\frac{4}{9}$
sign of $f^{\prime}(x)$	negative	positive

ii. first derivative test.

At critical number $c=0$, sign of derivative $f^{\prime}(x)$ goes from
(i) negative to positive
(ii) positive to negative
(iii) negative to negative
(iv) positive to positive
and so, according to first derivative rule, there is
(i) a relative minimum
(ii) a relative maximum
(iii) not a relative extremum
at critical number $c=0$,
and since $f(0)=\frac{2(0)^{2}+2}{(0)^{2}+5}=\frac{2}{5}$,
at critical point $(c, f(c))=\left(0, \frac{2}{5}\right)$.
(f) points of inflection, intervals and concavity

Recall, since

$$
f^{\prime}(x)=\frac{16 x}{x^{4}+10 x^{2}+25}=0
$$

there is a critical number at

$$
c=(\mathrm{i})-\mathbf{2} \quad \text { (ii) } \mathbf{2} \quad \text { (iii) } \mathbf{0}
$$

and also since
Let $u(x)=16 x$ and $v(x)=\left(x^{2}+5\right)^{2}=x^{4}+10 x^{2}+25$.
then, $u^{\prime}(x)=16$ and $v^{\prime}(x)=4 x^{3}+20 x$
so $v(x) u^{\prime}(x)=\left(x^{4}+10 x^{2}+25\right)(16)$ and $u(x) v^{\prime}(x)=(16 x)\left(4 x^{3}+20 x\right)$
and so since
$f^{\prime \prime}(x)=\frac{v(x) \cdot u^{\prime}(x)-u(x) \cdot v^{\prime}(x)}{[v(x)]^{2}}=\frac{\left(x^{2}+5\right)^{2}(16)-(16 x)\left(4 x^{3}+20 x\right)}{\left[x^{2}+5\right]^{4}}=\frac{16\left(5-3 x^{2}\right)}{\left[x^{2}+5\right]^{3}}=0$
there are two points of inflection at
$x=(\mathrm{i})-\sqrt{\frac{5}{3}} \quad$ (ii) $0 \quad$ (iii) $\sqrt{\frac{5}{3}}$
because $5-3 x^{2}=0$ when $x^{2}=\frac{5}{3}$ or $x= \pm \sqrt{\frac{5}{3}}$
and so there are three intervals to investigate
(i) $(-\infty, 0)$ (ii) $\left(-\infty,-\sqrt{\frac{5}{3}}\right)$ (iii) $\left(-\sqrt{\frac{5}{3}}, \sqrt{\frac{5}{3}}\right) \quad$ (iv) $\left(\sqrt{\frac{5}{3}}, \infty\right)$
and three tests numbers, say (i) -2 (ii) $-\sqrt{\frac{5}{3}}$ (iii) $0 \quad$ (iv) $\sqrt{\frac{5}{3}} \quad$ (v) 2
and at test number $-1, f^{\prime \prime}(-2)=\frac{16\left(5-3(-2)^{2}\right)}{\left[(-2)^{2}+5\right]^{3}}=-\frac{112}{729}$ is negative,
so $f(x)$ is concave (i) up (ii) down over $\left(-\infty,-\sqrt{\frac{5}{3}}\right)$
and at test number $0, f^{\prime \prime}(0)=\frac{16\left(5-3(0)^{2}\right)}{\left[(0)^{2}+5\right]^{3}}=\frac{16}{25}$ is positive, so $f(x)$ is concave (i) up (ii) down over $\left(-\sqrt{\frac{5}{3}}, \sqrt{\frac{5}{3}}\right)$
and at test number $1, f^{\prime \prime}(2)=\frac{16\left(5-3(2)^{2}\right)}{\left[(2)^{2}+5\right]^{3}}=-\frac{112}{729}$ is negative, so $f(x)$ is concave (i) up (ii) down over $\left(\sqrt{\frac{5}{3}}, \infty\right)$
so summarizing:

interval	$\left(-\infty,-\sqrt{\frac{5}{3}}\right)$	$\left(-\sqrt{\frac{5}{3}}, \sqrt{\frac{5}{3}}\right)$	$\left(\sqrt{\frac{5}{3}}, \infty\right)$
test number	-2	0	2
$f^{\prime \prime}(x)=\frac{16\left(5-3 x^{2}\right)}{\left[x^{2}+5\right)^{3}}$	$f^{\prime \prime}(-2)=-\frac{112}{729}$	$f^{\prime \prime}(0)=\frac{16}{25}$	$f^{\prime \prime}(2)=-\frac{112}{729}$
sign of $f^{\prime \prime}(x)$	negative	positive	negative

(g) Graph summary. Combining information from above:

interval	$\left(-\infty,-\sqrt{\frac{5}{3}}\right)$	$\left(-\sqrt{\frac{5}{3}}, 0\right)$	$\left(0, \sqrt{\frac{5}{3}}\right)$	$\left(\sqrt{\frac{5}{3}}, \infty\right)$
sign of $f^{\prime}(x)$	-	-	+	+
sign of $f^{\prime \prime}(x)$	-	+	+	-
increasing/decreasing?	decreasing	decreasing	increasing	increasing
concave up/down?	down	up	up	down

4. Sketching functions. Sketch function on graph which satisfies conditions.
(a) f is continuous everywhere
(b) y-intercept at $y=3$, no x-intercepts
(c) critical points at $(0,3)$ and $(3,6)$
(d) inflection point at $(-3,4)$
(e) $f^{\prime}(x)<0$ on $(-5,0)$ and $(3,5)$
(f) $f^{\prime}(x)>0$ on $(0,3)$
(g) $f^{\prime \prime}(x)>0$ on $(-5,-3)$
(h) $f^{\prime \prime}(x)<0$ on $(-3,5)$

Figure 5.20 (Sketching functions)
5. More Sketching Functions. Sketch function on graph which satisfies conditions.
(a) f is continuous everywhere except at vertical asymptote at $x=2$
(b) y-intercept at $y=5$, no x-intercepts
(c) critical point at $(3,5)$
(d) inflection point at $(-1,4)$
(e) $f^{\prime}(x)<0$ on $(2,3)$
(f) $f^{\prime}(x)>0$ on $(-5,2)$ and $(3,5)$
(g) $f^{\prime \prime}(x)>0$ on $(-1,2)$ and $(2,5)$
(h) $f^{\prime \prime}(x)<0$ on $(-5,-1)$

Figure 5.21 (More sketching functions)

